English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A two-component adhesive: Tau fibrils arise from a combination of a well-defined motif and conformationally flexible interactions.

MPS-Authors
/persons/resource/persons86706

Xiang,  S.
Research Group of Solid-State NMR-2, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons185753

Kulminskaya,  N.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons79129

Habenstein,  B.
Research Group of Solid-State NMR-2, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons142048

Paulat,  M.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15147

Griesinger,  C.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons14824

Becker,  S.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons129267

Linser,  R.
Research Group of Solid-State NMR-2, MPI for Biophysical Chemistry, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

2418326_Suppl_1.pdf
(Supplementary material), 10MB

2418326_Suppl_2.mpg
(Supplementary material), 5MB

Citation

Xiang, S., Kulminskaya, N., Habenstein, B., Biernat, J., Tepper, K., Paulat, M., et al. (2017). A two-component adhesive: Tau fibrils arise from a combination of a well-defined motif and conformationally flexible interactions. Journal of the American Chemical Society, 139(7), 2639-2646. doi:10.1021/jacs.6b09619.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-E82C-A
Abstract
Fibrillar aggregates of Aβ and Tau in the brain are the major hallmarks of Alzheimer’s disease. Most Tau fibers have a twisted appearance, but the twist can be variable and even absent. This ambiguity, which has also been associated with different phenotypes of tauopathies, has led to controversial assumptions about fibril constitution, and it is unclear to-date what the molecular causes of this polymorphism are. To tackle this question, we used solid-state NMR strategies providing assignments of non-seeded three-repeat-domain Tau3RD with an inherent heterogeneity. This is in contrast to the general approach to characterize the most homogeneous preparations by construct truncation or intricate seeding protocols. Here, carbon and nitrogen chemical-shift conservation between fibrils revealed invariable secondary-structure properties, however, with inter-monomer interactions variable among samples. Residues with variable amide shifts are localized mostly to N- and C-terminal regions within the rigid beta structure in the repeat region of Tau3RD. By contrast, the hexapeptide motif in repeat R3, a crucial motif for fibril formation, shows strikingly low variability of all NMR parameters: Starting as a nucleation site for monomer–monomer contacts, this six-residue sequence element also turns into a well-defined structural element upon fibril formation. Given the absence of external causes in vitro, the interplay of structurally differently conserved elements in this protein likely reflects an intrinsic property of Tau fibrils.