English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology.

MPS-Authors
/persons/resource/persons45937

Jans,  D. C.       
Research Group of Mitochondrial Structure and Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15200

Heim,  G.
Facility for Electron Microscopy, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15269

Jakobs,  S.
Research Group of Mitochondrial Structure and Dynamics, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2418444.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Tarasenko, D., Barbot, M., Jans, D. C., Kroppen, B., Sadowski, B., Heim, G., et al. (2017). The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. Journal of Cell Biology, 216(4), 889-899. doi:10.1083/jcb.201609046.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-E988-3
Abstract
The inner membrane (IM) of mitochondria displays an intricate, highly folded architecture and can be divided into two domains: the inner boundary membrane adjacent to the outer membrane and invaginations toward the matrix, called cristae. Both domains are connected by narrow, tubular membrane segments called cristae junctions (CJs). The formation and maintenance of CJs is of vital importance for the organization of the mitochondrial IM and for mitochondrial and cellular physiology. The multisubunit mitochondrial contact site and cristae organizing system (MICOS) was found to be a major factor in CJ formation. In this study, we show that the MICOS core component Mic60 actively bends membranes and, when inserted into prokaryotic membranes, induces the formation of cristae-like plasma membrane invaginations. The intermembrane space domain of Mic60 has a lipid-binding capacity and induces membrane curvature even in the absence of the transmembrane helix. Mic60 homologues from α-proteobacteria display the same membrane deforming activity and are able to partially overcome the deletion of Mic60 in eukaryotic cells. Our results show that membrane bending by Mic60 is an ancient mechanism, important for cristae formation, and had already evolved before α-proteobacteria developed into mitochondria.