English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties

MPS-Authors
/persons/resource/persons101295

Su,  H.
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100833

Andreae,  M. O.
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons204273

Mikhailov,  E. F.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vlasenko, S. S., Su, H., Pöschl, U., Andreae, M. O., & Mikhailov, E. F. (2016). Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties. Atmospheric Measurement Techniques Discussions, 8. doi:10.5194/amt-2016-249.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-ED24-1
Abstract
A tandem arrangement of Differential Mobility Analyser and Humidified Centrifugal Particle Mass Analyser (DMA-HCPMA) was developed to measure the deliquescence and efflorescence thresholds and the water uptake of submicron particles over the relative humidity (RH) range from 10 to 95 %. The hygroscopic growth curves obtained for ammonium sulfate and sodium chloride test aerosols are consistent with thermodynamic model predictions and liter- ature data. The DMA-HCPMA system was applied to measure the hygroscopic properties of urban aerosol particles, and the kappa mass interaction model (KIM) was used to characterize and parameterize the concentration-dependent water uptake observed in the 50–95 % RH range. For DMA-selected 160 nm dry particles (modal mass of 3.5 fg), we obtained a volume-based hygroscopicity parameter, κv≈0.2, which is consistent with literature data for freshly emitted urban aerosols. Overall, our results show that the DMA-HCPMA system can be used to measure size-resolved mass growth factors of atmospheric aerosol particles upon hydration and dehydration up to 95 % RH. Direct measurements of particle mass avoid the typical complications associated with the commonly used mobility-diameter-based HTDMA technique (mainly due to poorly defined or unknown morphology and density).