English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bacterial unculturability and the formation of intercellular metabolic networks

MPS-Authors
/persons/resource/persons104916

Pande,  Samay
Research Group Dr. C. Kost, Experimental Ecology and Evolution, Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3986

Kost,  Christian
Research Group Dr. C. Kost, Experimental Ecology and Evolution, Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pande, S., & Kost, C. (2017). Bacterial unculturability and the formation of intercellular metabolic networks. Trends in Microbiology, 25(5), 349-361. doi:10.1016/j.tim.2017.02.015.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-F02D-D
Abstract
The majority of known bacterial species cannot be cultivated under laboratory conditions. Here we argue that the adaptive emergence of obligate metabolic interactions in natural bacterial communities can explain this pattern. Bacteria commonly release metabolites into the external environment. Accumulating pools of extracellular metabolites create an ecological niche that benefits auxotrophic mutants, which have lost the ability to autonomously produce the corresponding metabolites. In addition to a diffusion-based metabolite transfer, auxotrophic cells can use contact-dependent means to obtain nutrients from other co-occurring cells. Spatial colocalisation and a continuous coevolution further increase the nutritional dependency and optimise fluxes through combined metabolic networks. Thus, bacteria likely function as networks of interacting cells that reciprocally exchange nutrients and biochemical functions rather than as physiologically autonomous units.