English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Contributions of volatile and nonvolatile compounds (at 300°C) to condensational growth of atmospheric nanoparticles: An assessment based on 8.5 years of observations at the Central Europe background site Melpitz

MPS-Authors
/persons/resource/persons194521

Wang,  Z.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127588

Cheng,  Y. F.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101295

Su,  H.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, Z., Birmili, W., Hamed, A., Wehner, B., Spindler, G., Pei, X., et al. (2017). Contributions of volatile and nonvolatile compounds (at 300°C) to condensational growth of atmospheric nanoparticles: An assessment based on 8.5 years of observations at the Central Europe background site Melpitz. Journal of Geophysical Research-Atmospheres, 122(1), 485-497. doi:10.1002/2016JD025581.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-95BD-D
Abstract
Long-term measurements of particle number size distributions in combination with thermodenuder analysis have been performed since July 2003 at the Central European station of Melpitz, Germany. Up to the end of 2011, 20% of all investigated days during the 8.5 years of measurements showed new particle formation and subsequent growth. To investigate the role of various chemical compound candidates for condensational nanoparticle growth, we focused on nucleation events in which the measured size distributions with and without thermodesorption both showed growth patterns (accounting for up to ~85% of all nucleation events). In this study, particulate compounds that volatilize at 300°C were specifically defined as “volatile,” in contrast to “nonvolatile” compounds, which remain in the particulate phase after being heated to 300°C. A strong correlation between ambient temperature and growth rate associated with volatile substances (except gaseous sulfuric acid) was found, which implies the importance of organics (possibly oxidized biogenic organic compounds) in particle growth at Melpitz. The contributions of the volatile compounds to the growth rate due to condensation of gaseous sulfuric acid and organics were found to be about 19% and 47%, respectively. The remaining ~25% was attributed to nonvolatile residuals, which appear to form gradually during the particle growth process and are characterized as extremely low-volatility compounds. The growth rate associated with volatile components exhibited significant seasonal variation, with the highest value during summertime, whereas the growth rate associated with the nonvolatile fraction showed less fluctuation.