English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Eukaryotic Sensor for Membrane Lipid Saturation

MPS-Authors
/persons/resource/persons204781

Covino,  Roberto
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons121113

Bahrami,  Amir Houshang
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Covino, R., Ballweg, S., Stordeur, C., Michaelis, J. B., Puth, K., Wernig, F., et al. (2016). A Eukaryotic Sensor for Membrane Lipid Saturation. Molecular Cell, 63(1), 49-59. doi:10.1016/j.molcel.2016.05.015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-1BD3-5
Abstract
Maintaining a fluid bilayer is essential for cell signaling and survival. Lipid saturation is a key factor determining lipid packing and membrane fluidity, and it must be tightly controlled to guarantee organelle function and identity. A dedicated eukaryotic mechanism of lipid saturation sensing, however, remains elusive. Here we show that Mga2, a transcription factor conserved among fungi, acts as a lipid-packing sensor in the ER membrane to control the production of unsaturated fatty acids. Systematic mutagenesis, molecular dynamics simulations, and electron paramagnetic resonance spectroscopy identify a pivotal role of the oligomeric transmembrane helix (TMH) of Mga2 for intra-membrane sensing, and they show that the lipid environment controls the proteolytic activation of Mga2 by stabilizing alternative rotational orientations of the TMH region. This work establishes a eukaryotic strategy of lipid saturation sensing that differs significantly from the analogous bacterial mechanism relying on hydrophobic thickness