Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Multiple signaling pathways control stimulus-secretion coupling in rat peritoneal mast cells.


Penner,  R.
Department of Membrane Biophysics, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Penner, R. (1988). Multiple signaling pathways control stimulus-secretion coupling in rat peritoneal mast cells. Proceedings of the National Academy of Sciences of the United States of America, 85(24), 9856-9860.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-2EAA-6
Fura-2 and membrane capacitance measurements were performed to investigate intracellular Ca2+ concentration [( Ca2+]i) and secretory responses of rat peritoneal mast cells following secretagogue stimulation. Compound 48/80 and internally applied guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]) induced transient rises in [Ca2+]i and caused membrane capacitance increases as secretion occurred. The 48/80-induced Ca2+ transients and secretory responses were blocked by guanosine 5'-[beta-thio]diphosphate and neomycin, indicating that inositolphospholipid breakdown mediated by guanine nucleotide-binding regulatory protein (G protein) plays an important role in stimulus-secretion coupling. However, pertussis toxin did not block Ca2+ transients induced by 48/80 or GTP[gamma-S], whereas secretory responses were either abolished (48/80) or developed only after a considerable delay (GTP[gamma-S]). Similar effects were obtained by perfusing cells with cAMP: (i) Ca2+ transients following stimulation with 48/80 remained unaffected by cAMP, but secretory responses were abolished; (ii) GTP[gamma-S] induced normal Ca2+ transients and degranulation in the presence of cAMP. Pretreatment of mast cells with phorbol 12-myristate 13-acetate (PMA) abolished 48/80- and GTP[gamma-S]-induced Ca2+ transients (but not inositol trisphosphate-induced Ca2+ transients), whereas secretion still occurred. At the same time, the Ca2+ requirement for secretion was reduced by PMA. These results indicate that secretion in mast cells is under control of an as yet unidentified signaling pathway that involves a G protein. This pathway is distinct from inositolphospholipid turnover and may provide the triggering mechanism for secretion, whereas the inositolphospholipid pathway serves to increase [Ca2+]i and renders the secretory process more sensitive to [Ca2+]i by activating protein kinase C. Persistent activation of protein kinase C through phorbol ester imposes negative feedback control on the inositolphospholipid pathway, whereas cAMP may inhibit the unidentified signaling pathway.