Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Über Actin-Nucleotide und die Funktion und Bindung der Nucleotidphosphate im G- und F-Actin

MPG-Autoren
/persons/resource/persons205153

Grubhofer,  N.
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons204155

Weber,  H. H.
Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grubhofer, N., & Weber, H. H. (1961). Über Actin-Nucleotide und die Funktion und Bindung der Nucleotidphosphate im G- und F-Actin. Zeitschrift für Naturforschung, B: A Journal of Chemical Sciences, 16(7), 435-444. doi:10.1515/znb-1961-0707.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-30AC-4
Zusammenfassung
1. If pure F-actin-ADP * which is free of enzymes is depolymerized G-actin-ATP * arises in the presence of 10-4 M ATP, G-actin-ITP * in the presence of 10-4 M ITP, and G-actin-ADP in the presence of 10-4 M ADP. If the depolymerization takes place in the absence of free nucleotide phosphate G-actin-ADP also arises. If G-actin-ADP is added to a solution containing 10-4 M ITP or ATP the bound ADP is exchanged with ATP respectively with ITP (Section II). 2. G-actin-ATP and G-actin-ITP polymerize to F-actin-ADP and to F-actin-IDP respectively by splitting off the γ-phosphate of the ATP or ITP. G-actin-ADP polymerizes to F-actin-ADP without splitting off phosphate. The polymerization of G-actin-ADP is as complete as the polymerization of G-actin-ATP; but the process is perceptibly shower (Section II). 3. G-actin that is not bound to a nucleotide phosphate does not polymerize (Section II). 4. G-actin-ADP in the absence of free ADP spontaneously disintegrates in a half-life of 70 minutes to yield G-actin and ADP. If the dissociating ADP is continuously removed by being bound to Dowex 1 × 10 the half life drops to 7 to 8 minutes. In the presence of Dowex G-actin-ATP disintegrates in a half life of 240 minutes (Section III). 5. The disintegration of G-actin-ADP takes place in two stages. A reversible dissociation into ADP and G-actin I is followed by an irreversible denaturation of G-actin I to G-actin II in a half life ~ 12 minutes. Contrary to actin I G-actin II even on the addition of ATP no longer polymerizes. The difference in the half life of pure G-actin-ADP on the hand and of G-actin-ADP+ADP as well as G-actin-ATP on the other must be attributed to the relatively high equilibrium concentration of G-actin I in the first case and of the relatively slight equilibrium concentration of G-actin I in the second case (Section IV). 6. If the alkaline earth of G-actin is blocked by 10-3 M EDTA G-actin-ATP disintegrates in a half life ∼ 3 minutes and G-actin-ADP in a half life ∼ 0,3 minutes. On the other hand, the stability of F-actin-ADP is not noticeably affected (Section V). 7. Through a two hour rapid dialysis in the presence of 10-4 M ATP the KCl-content of an F-actin-ADP solution drops to 5 × 10-4 M KCl. In spite of this the depolymerization and exchange of ADP with ATP is finished not before 40 hours if the solution remains at rest. If, however, the actin solution containing 5 × 10-4 M KCl is treated with the Teflon homogenizer for about 30 sec. depolymerization and ADP-ATP-exchange occur immediately. On the contrary, F-actin-ADP in 10–1 M KCl solution is not affected at all by a treatment with the Teflon-homogenizer. Apparently the decrease of the KClconcentration from 10-1 M to 5 × 10-4 M considerably diminishes the strength of the bond between the actin monomers without immediately destroying the F-actin arrangement. The immediate ADP-ATP-exchange after the mechanical destruction of the F-actin arrangement proves that this exchange in F-actin does not take place only because of steric hindrance. ADP is present in F-actin apparently between the individual monomers so that EDTA, ATP and enzymes affecting ATP cannot approach ADP. Consequently it is not necessary to assume that the extraordinary stability of F-actin-ADP is due to a special kind of bond between actin monomers and nucleotide phosphate (Section V). 8. In the appendix it is shown that G-actin-ADP does not polymerize 15′ after preparation if the aceton dried muscle powder is prepared at pH 8 to 9 instead of pH ∼ 7.