Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Rapid diffusion-weighted magnetic resonance imaging of the brain without susceptibility artifacts: Single-shot STEAM with radial undersampling and iterative reconstruction.

MPG-Autoren
/persons/resource/persons205258

Merrem,  A.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15241

Hofer,  S.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15968

Voit,  D.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15516

Merboldt,  K. D.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons199382

Klosowski,  J.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons85321

Untenberger,  M.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15082

Frahm,  J.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2434072.pdf
(Verlagsversion), 592KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Merrem, A., Hofer, S., Voit, D., Merboldt, K. D., Klosowski, J., Untenberger, M., et al. (2017). Rapid diffusion-weighted magnetic resonance imaging of the brain without susceptibility artifacts: Single-shot STEAM with radial undersampling and iterative reconstruction. Investigative Radiology, 52(7), 428-433. doi:10.1097/RLI.0000000000000357.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-38B2-7
Zusammenfassung
OBJECTIVE: The aim of this study was to develop a rapid diffusion-weighted (DW) magnetic resonance imaging (MRI) technique for whole-brain studies without susceptibility artifacts and measuring times below 3 minutes. MATERIALS AND METHODS: The proposed method combines a DW spin-echo module with a single-shot stimulated echo acquisition mode MRI sequence. Previous deficiencies in image quality due to limited signal-to-noise ratio are compensated for (1) by radial undersampling to enhance the flip angle and thus the signal strength of stimulated echoes; (2) by defining the image reconstruction as a nonlinear inverse problem, which is solved by the iteratively regularized Gauss-Newton method; and (3) by denoising with use of a modified nonlocal means filter. The method was implemented on a 3 T MRI system (64-channel head coil, 80 mT · m gradients) and evaluated for 10 healthy subjects and 2 patients with an ischemic lesion and epidermoid cyst, respectively. RESULTS: High-quality mean DW images of the entire brain were obtained by acquiring 1 non-DW image and 6 DW images with different diffusion directions at b = 1000 s · mm. The achievable resolution for a total measuring time of 84 seconds was 1.5 mm in plane with a section thickness of 4 mm (55 sections). A measuring time of 168 seconds allowed for an in-plane resolution of 1.25 mm and a section thickness of 3 mm (54 sections). Apparent diffusion coefficient values were in agreement with literature data. CONCLUSIONS: The proposed method for DW MRI offers immunity against susceptibility problems, high spatial resolution, adequate signal-to-noise ratio and clinically feasible scan times of less than 3 minutes for whole-brain studies. More extended clinical trials require accelerated computation and online reconstruction.