English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Attenuation of long-range temporal correlations in the amplitude dynamics of alpha and beta neuronal oscillations in patients with schizophrenia

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Nikulin_2012.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Nikulin, V. V., Jönsson, E. G., & Brismar, T. (2012). Attenuation of long-range temporal correlations in the amplitude dynamics of alpha and beta neuronal oscillations in patients with schizophrenia. NeuroImage, 61(1), 162-169. doi:10.1016/j.neuroimage.2012.03.008.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-3BEA-D
Abstract
Although schizophrenia was previously associated with affected spatial neuronal synchronization, surprisingly little is known about the temporal dynamics of neuronal oscillations in this disease. However, given that the coordination of neuronal processes in time represents an essential aspect of practically all cognitive operations, it might be strongly affected in patients with schizophrenia. In the present study we aimed at quantifying long-range temporal correlations (LRTC) in patients (18 with schizophrenia; 3 with schizoaffective disorder) and 28 healthy control subjects matched for age and gender. Ongoing neuronal oscillations were recorded with multi-channel EEG at rest condition. LRTC in the range 5–50 s were analyzed with Detrended Fluctuation Analysis. The amplitude of neuronal oscillations in alpha and beta frequency ranges did not differ between patients and control subjects. However, LRTC were strongly attenuated in patients with schizophrenia in both alpha and beta frequency ranges. Moreover, the cross-frequency correlation between LRTC belonging to alpha and beta oscillations was stronger for patients than healthy controls, indicating that similar neurophysiological processes affect neuronal dynamics in both frequency ranges. We believe that the attenuation of LRTC is most likely due to the increased variability in neuronal activity, which was previously hypothesized to underlie an excessive switching between the neuronal states in patients with schizophrenia. Attenuated LRTC might allow for more random associations between neuronal activations, which in turn might relate to the occurrence of thought disorders in schizophrenia.