Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Stępień, M., Conradi, J., Waterstraat, G., Hohlefeld, F. U., Curio, G., & Nikulin, V. V. (2011). Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neuroscience Letters, 488(1), 17-21. doi:10.1016/j.neulet.2010.10.072.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-3BDC-D
Previous neuroimaging studies based on neurovascular coupling have shown that stroke affects both, strength and spatial extent of brain activation during upper limb movements. Here, we investigated the sub-second amplitude dynamics of a direct neuronal measure, i.e., event-related desynchronization (ERD) of EEG oscillations during finger movements, in patients with acute cortical and subcortical stroke. Acute cortical strokes were found to decrease the ERD of alpha oscillations for the affected pericentral sensorimotor areas compared to a control group. Within the cortical stroke group, the affected hemisphere showed a smaller alpha-ERD compared to the unaffected hemisphere when each was contralateral to the acting hand. Furthermore, when cortical stroke patients moved their paretic hand, the ipsilateral (i.e., contralesional) alpha-ERD was stronger than the contralateral (ipsilesional) ERD. Interestingly, the alpha-ERD amplitude in a hemisphere with a cortical stroke was relatively well preserved for non-paretic hand movements compared to alpha-ERD amplitude for paretic hand movements. This finding provides a new perspective for assessing the rehabilitative potential, which could be utilized through training of the still responsive cortical network, e.g., via enforced use of the paretic hand.