English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of neuronal synchrony in the generation of evoked EEG/MEG responses

MPS-Authors
There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Telenczuk, B., Nikulin, V. V., & Curio, G. (2010). Role of neuronal synchrony in the generation of evoked EEG/MEG responses. Journal of Neurophysiology, 104(6), 3557-3567. doi:10.1152/jn.00138.2010.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-3BD6-A
Abstract
Evoked EEG/MEG responses are a primary real-time measure of perceptual and cognitive activity in the human brain, but their neuronal generator mechanisms are not yet fully understood. Arguments have been put forward in favor of either “phase-reset” of ongoing oscillations or “added-energy” models. Instead of advocating for one or the other model, here we show theoretically that the differentiation between these two generation mechanisms might not be possible if based solely on macroscopic EEG/MEG recordings. Using mathematical modeling, we show that a simultaneous phase reset of multiple oscillating neuronal (microscopic) sources contributing to EEG/MEG can produce evoked responses in agreement with both, the “added-energy” and the “phase-reset” model. We observe a smooth transition between the two models by just varying the strength of synchronization between the multiple microscopic sources. Consequently, because precise knowledge about the strength of microscopic ensemble synchronization is commonly not available in noninvasive EEG/MEG studies, they cannot, in principle, differentiate between the two mechanisms for macroscopic-evoked responses.