日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Preparation of Waterproof Organometal Halide Perovskite Photonic Crystal Beads

MPS-Authors
/persons/resource/persons198175

Chen,  Kun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons185894

Schünemann,  Stephan
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Chen, K., Schünemann, S., & Tüysüz, H. (2017). Preparation of Waterproof Organometal Halide Perovskite Photonic Crystal Beads. Angewandte Chemie International Edition, 56(23), 6648-6652. doi:10.1002/anie.201702556.


引用: https://hdl.handle.net/11858/00-001M-0000-002D-474A-5
要旨
Herein, we report on an innovative method for the preparation of a series of organometal halide perovskite (OHP) photonic crystal beads with pronounced and tunable photonic stop bands by using self-assembled polystyrene spheres as a mold. After infiltration of the mold with OHP precursor solution and slow drying, the OHPs crystallized in the voids of the polystyrene arrays. By controlling the diameter of the polystyrene spheres, the photonic stop band of the OHPs could be precisely tuned. The overlap between the photonic stop band of the beads and the band gap of the OHPs enhances the light harvesting of the perovskite because of the slow photon effect, which arises from the photonic crystal beads. Moreover, the stability of the composite was greatly enhanced by coating with the transparent polymer PDMS without blocking the light propagation. The coated OHP photonic beads kept their composition even after having been in contact with water for 24 h.