Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coevolution of functional flow processing networks

MPG-Autoren
/persons/resource/persons21692

Kaluza,  Pablo F.
National Scientific and Technical Research Council & Faculty of Exact and Natural Sciences, National University of Cuyo;
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

art_10.1140_epjb_e2017-80051-6.pdf
(Verlagsversion), 656KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kaluza, P. F. (2017). Coevolution of functional flow processing networks. The European Physical Journal B, 90(5): 80. doi:10.1140/epjb/e2017-80051-6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-51DF-C
Zusammenfassung
We present a study about the construction of functional flow processing networks that produce prescribed output patterns (target functions). The constructions are performed with a process of mutations and selections by an annealing-like algorithm. We consider the coevolution of the prescribed target functions during the optimization processes. We propose three different paths for these coevolutions in order to evolve from a simple initial function to a more complex final one. We compute several network properties during the optimizations by using the different path-coevolutions as mean values over network ensembles. As a function of the number of iterations of the optimization we find a similar behavior like a phase transition in the network structures. This result can be seen clearly in the mean motif distributions of the constructed networks. Coevolution allows to identify that feed-forward loops are responsible for the development of the temporal response of these systems. Finally, we observe that with a large number of iterations the optimized networks present similar properties despite the path-coevolution we employed.