Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide

MPG-Autoren
/persons/resource/persons201077

Haakh,  Harald R.
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201058

Faez,  Sanli
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201175

Sandoghdar,  Vahid
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Haakh, H. R., Faez, S., & Sandoghdar, V. (2016). Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide. Physical Review A, 94: 053840. doi:10.1103/PhysRevA.94.053840.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6EAA-A
Zusammenfassung
We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode splitting even though no external cavity resonance is employed. By considering densities much higher than those encountered in cold atom experiments, we study the influence of the near-field dipole coupling and disorder on the resulting complex super-radiant and subradiant polaritonic states. In particular, we provide evidence for the longitudinal localization of light in a one-dimensional open system and provide a polaritonic phase diagram. Our results motivate a number of experiments, where new coherent superposition states of light and matter can be realized in the solid state.