Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ultimate-state transition of turbulent Rayleigh-Benard convection

MPG-Autoren
/persons/resource/persons173445

Ahlers,  Günter
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ahlers, G., Bodenschatz, E., & He, X. (2017). Ultimate-state transition of turbulent Rayleigh-Benard convection. Physical Review Fluids, 2(5): 054603. doi:10.1103/PhysRevFluids.2.054603.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-58E6-D
Zusammenfassung
Recently Schumacher et al. [Phys. Rev. Fluids 1, 084402 (2016)] used direct numerical simulation to calculate the shear stress exerted on the top and bottom viscous boundary layers (BLs) of Rayleigh-Benard convection with a Prandtl number Pr = 0.021 and aspect ration Gamma = 1 for Rayleigh numbers Ra up to 4 x 10(8). By extrapolating their results to larger Ra, they concluded that the sample would undergo a transition to turbulent BLs and enter the "ultimate state" at Ra* similar or equal to 10(11) for Pr = 0.021. Here we show that their result is consistent with the experimentally determined Ra* = 2 x 10(13) for Pr = 0.82 by He et al. [ Phys. Rev. Lett. 108, 024502 (2012); New J. Phys. 17, 063028 (2015)] and the Pr dependence of Ra* predicted by Grossmann and Lohse [ Phys. Rev. E 66, 016305 (2002)]. Thus the numerical results of Schumacher et al. support the interpretation of the experimentally observed transition at Ra* = 2 x 10(13) for Pr = 0.82 as the ultimate-state transition.