English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nuclear Resonant Surface Diffraction of Synchrotron Radiation

MPS-Authors
/persons/resource/persons141017

Meier,  Guido
The Hamburg Centre for Ultrafast Imaging;
Dynamics and Transport in Nanostructures, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Fulltext (public)

1703.08584.pdf
(Preprint), 2MB

Supplementary Material (public)
Citation

Schlage, K., Dzemiantsova, L., Bocklage, L., Wille, H.-C., Pues, M., Meier, G., et al. (2017). Nuclear Resonant Surface Diffraction of Synchrotron Radiation. Physical Review Letters, 118: 237204. doi:10.1103/PhysRevLett.118.237204.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-A492-7
Abstract
Nuclear resonant x-ray diffraction in grazing incidence geometry is used to determine the lateral magnetic configuration in a one-dimensional lattice of ferromagnetic nanostripes. During magnetic reversal, strong nuclear superstructure diffraction peaks appear in addition to the electronic ones due to an antiferromagnetic order in the nanostripe lattice. We show that the analysis of the angular distribution together with the time dependence of the resonantly diffracted x rays reveals surface spin structures with very high sensitivity. This scattering technique provides unique access to laterally correlated spin configurations in magnetically ordered nanostructures and, in perspective, also to their dynamics.