English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spatio-temporal relationships between optical information and carbon fluxes in a mediterranean tree-grass ecosystem

MPS-Authors
/persons/resource/persons202637

Pacheco-Labrador,  Javier
Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons189169

El-Madany,  Tarek S.
Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62486

Migliavacca,  Mirco
Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2651.pdf
(Publisher version), 9MB

Supplementary Material (public)

BGC2651s1.pdf
(Supplementary material), 174KB

Citation

Pacheco-Labrador, J., El-Madany, T. S., Martín, M. P., Migliavacca, M., Rossini, M., Carrara, A., et al. (2017). Spatio-temporal relationships between optical information and carbon fluxes in a mediterranean tree-grass ecosystem. Remote Sensing, 9(6): 608. doi:10.3390/rs9060608.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-724F-4
Abstract
Spatio-temporal mismatches between Remote Sensing (RS) and Eddy Covariance (EC) data as well as spatial heterogeneity jeopardize terrestrial Gross Primary Production (GPP) modeling. This article combines: (a) high spatial resolution hyperspectral imagery; (b) EC footprint climatology estimates; and (c) semi-empirical models of increasing complexity to analyze the impact of these factors on GPP estimation. Analyses are carried out in a Mediterranean Tree-Grass Ecosystem (TGE) that combines vegetation with very different physiologies and structure. Halfhourly GPP (GPPhh) were predicted with relative errors ~36%. Results suggest that, at EC footprint scale, the ecosystem signals are quite homogeneous, despite tree and grass mixture. Models fit using EC and RS data with high degree of spatial and temporal match did not significantly improved models performance; in fact, errors were explained by meteorological variables instead. In addition, the performance of the different models was quite similar. This suggests that none of the models accurately represented light use efficiency or the fraction of absorbed photosynthetically active radiation. This is partly due to model formulation; however, results also suggest that the mixture of the different vegetation types might contribute to hamper such modeling, and should be accounted for GPP models in TGE and other heterogeneous ecosystems.