Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts

MPG-Autoren
/persons/resource/persons85190

Massué,  Cyriac
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogenous Reactions Max Planck Institute for Chemical Energy Conversion;

/persons/resource/persons104550

Pfeifer,  Verena
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons39194

Huang,  Xing
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons71845

Noack,  Johannes
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32715

Tarasov,  Andrey
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons104326

Cap,  Sébastien
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogenous Reactions Max Planck Institute for Chemical Energy Conversion;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2453519.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)

SI_2453519.pdf
(Ergänzendes Material), 2MB

Zitation

Massué, C., Pfeifer, V., Huang, X., Noack, J., Tarasov, A., Cap, S., et al. (2017). High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts. ChemSusChem, 10(9), 1943-1957. doi:10.1002/cssc.201601817.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-7BDB-4
Zusammenfassung
The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution reaction (OER) remains a major challenge for acidic water splitting on an industrial scale. To address this challenge, we obtained an outstanding high-performance OER catalyst by loading Ir on conductive antimony-doped tin oxide (ATO)-nanoparticles by a microwave (MW)-assisted hydrothermal route. The obtained Ir phase was identified by using XRD as amorphous (XRD-amorphous), highly hydrated IrIII/IV oxohydroxide. To identify chemical and structural features responsible for the high activity and exceptional stability under acidic OER conditions with loadings as low as 20 µgIrcm-2, we used stepwise thermal treatment to gradually alter the XRD-amorphous Ir phase by dehydroxylation and crystallization of IrO2. This resulted in dramatic depletion of OER performance, indicating that the outstanding electrocatalytic properties of the MW-produced IrIII/IV oxohydroxide are prominently linked to the nature of the produced Ir phase. This finding is in contrast with the often reported stable but poor OER performance of crystalline IrO2-based compounds produced through more classical calcination routes. Our investigation demonstrates the immense potential of Ir oxohydroxide- based OER electrocatalysts for stable high-current water electrolysis under acidic conditions.