English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

MPS-Authors
/persons/resource/persons179670

Sun,  Yan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126916

Yan,  Binghai
Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wu, J., Yuan, H., Meng, M., Chen, C., Sun, Y., Chen, Z., et al. (2017). High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature Nanotechnology, 12(6), 530-535. doi:10.1038/NNANO.2017.43.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-7958-9
Abstract
High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research(1-9). However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present(10). Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of similar to 0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of > 20,000 cm(2) V-1 s(-1) is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition(11) and at the LaAlO3-SrTiO3 interface(12), making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm(2) V-1 s(-1)), large current on/off ratios (> 10(6)) and near-ideal subthreshold swing values (similar to 65 mV dec(-1)) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.