Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stochastic and resolvable gravitational waves from ultralight bosons

MPG-Autoren
/persons/resource/persons221938

Brito,  Richard
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons221940

Dvorkin,  Irina
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1706.05097.pdf
(Preprint), 606KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Brito, R., Ghosh, S., Barausse, E., Berti, E., Cardoso, V., Dvorkin, I., et al. (2017). Stochastic and resolvable gravitational waves from ultralight bosons. Physical Review Letters, 119: 131101. doi:10.1103/PhysRevLett.119.131101.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-8CA6-A
Zusammenfassung
Ultralight scalar fields around spinning black holes can trigger superradiant instabilities, forming a long-lived bosonic condensate outside the horizon. We use numerical solutions of the perturbed field equations and astrophysical models of massive and stellar-mass black hole populations to compute, for the first time, the stochastic gravitational-wave background from these sources. The background is observable by Advanced LIGO and LISA for field masses $m_s$ in the range $[2\times 10^{-13}, 10^{-12}]\,{\rm eV}$ and $[5\times 10^{-19}, 5\times 10^{-16}]\,{\rm eV}$, respectively, and it can affect the detectability of resolvable sources. Our estimates suggest that current constraints on the stochastic background from LIGO O1 may already exclude masses in the Advanced LIGO window. Semicoherent searches with Advanced LIGO (LISA) should detect $\sim 15~(5)$ to $200~(40)$ resolvable sources for scalar field masses $3\times 10^{-13}$ ($10^{-17}$) eV. LISA measurements of massive BH spins could either rule out bosons in the range $[10^{-18}, 1.6\times 10^{-13}]$ eV, or measure $m_s$ with ten percent accuracy in the range $[10^{-17}, 10^{-13}]$ eV.