English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

DNA synthesis in nucleotide-permeable Escherichia coli cells: VII. Conversion of φX174 DNA to its replicative form

MPS-Authors
/persons/resource/persons206683

Hess,  Ulrich
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons205356

Dürwald,  Hildegard
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93451

Hoffmann-Berling,  Hartmut
Department of Molecular Biology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hess, U., Dürwald, H., & Hoffmann-Berling, H. (1973). DNA synthesis in nucleotide-permeable Escherichia coli cells: VII. Conversion of φX174 DNA to its replicative form. Journal of Molecular Biology (London), 73(4), 407-423. doi:10.1016/0022-2836(73)90090-9.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-9278-E
Abstract
On incubation with deoxynucleoside triphosphates and rATP, ether-treated (nucleotide-permeable) cells convert the single-stranded DNA of adsorbed bacteriophage φX174 particles to the double-stranded replicative forms. The main final product is the doubly-closed replicative form, RFI; a minor product is the relaxed form II. Interruptions in the nascent complementary strand of the viral DNA result in pieces corresponding to 5 to 10% of the unit length of the viral DNA. Pieces of similar size were previously seen in studies of the replication synthesis of Escherichia, coli DNA in ether-treated cells. Since the conversion of the single-stranded φX174 DNA to replicative form is known to be mediated entirely by host factors, it is argued that the viral single strands are replicated by macromolecular factors involed in the replication of E. coli DNA and that this is the reason why new φX174 DNA appears in short pieces. Possible consequences of this interpretation for an understanding of duplex replication are discussed. The joining of the short pieces of complementary φX174 DNA is inhibited at low deoxynucleoside triphosphate concentration (1 μM) but not by nicotinamide mononucleotide, which inhibits the NAD-dependent DNA ligase and blocks the conversion of RFII to RFI in ether-treated cells. The results are discussed with respect to previous studies on cell-DNA synthesis (Geider, 1972). It is argued that there are two polynucleotide joining mechanisms, of which only one requires NAD-dependent ligase action.