English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC

MPS-Authors
/persons/resource/persons140404

Chang,  D. Y.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101286

Steil,  B.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  A.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chang, D. Y., Lelieveld, J., Tost, H., Steil, B., Pozzer, A., & Yoon, J. (2017). Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. Atmospheric Environment, 162, 127-140. doi:10.1016/j.atmosenv.2017.03.036.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-984A-C
Abstract
This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties with a prognostic cloud droplet nucleation scheme. We present modeled global distributions of cloud condensation nuclei (CCN) number concentrations and CCN activation rates, together with the effective hygroscopicity parameter κ, to describe the aerosol chemical composition effect on CCN activation. Large particles can easily activate into cloud droplets, even at low κ values due to the dominant size effect in cloud droplet formation. Small particles are less efficiently activated as CCN, and are more sensitive to aerosol composition and supersaturation. Since the dominant fraction of small particles generally originates from anthropogenic precursor emissions over land, this study focuses on the influence of the continental atmosphere, using a prognostic cloud droplet nucleation scheme that considers aerosol-cloud interactions during cloud formation, together with a double-moment cloud microphysics scheme. The agreement of simulated clouds and climate with observations generally improves over the Northern Hemisphere continents, particularly high air pollution regions such as Eastern US, Europe, East Asia by accounting for aerosol-cloud interactions that include impacts of chemical composition on CCN activation.