日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集
  このアイテムは取り下げられました。リリース履歴を表示詳細要約

取り下げ

学術論文

Inferring repeat-protein energetics from evolutionary information.

MPS-Authors
/persons/resource/persons206997

Parra,  R. G.
Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

(アクセスなし)

付随資料 (公開)

(アクセスなし)

引用

Espada, R., Parra, R. G., Mora, T., Walczak, A. M., & Ferreiro, D. U. (2017). Inferring repeat-protein energetics from evolutionary information. PLoS Computational Biology, 13(6):. doi:10.1371/journal.pcbi.1005584.


要旨
Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.