English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Revised mineral dust emissions in the atmospheric chemistry-climate model EMAC (based on MESSy 2.52)

MPS-Authors
/persons/resource/persons193111

Klingmüller,  K.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203197

Abdelkader,  M.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192199

Karydis,  V.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  A.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  J.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Klingmüller, K., Metzger, S., Abdelkader, M., Karydis, V., Stenchikov, G. L., Pozzer, A., et al. (2017). Revised mineral dust emissions in the atmospheric chemistry-climate model EMAC (based on MESSy 2.52). Geoscientific Model Development Discussions, 10.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-AFF5-B
Abstract
To improve the aeolian dust budget calculations with the global ECHAM/MESSy atmospheric chemistry-climate model (EMAC) we have implemented new input data and updates of the emission scheme. The data set comprises landcover classification, vegetation, clay fraction and topography. It is based on up-to-date observations, which is crucial to account for the rapid changes of deserts and semi-arid regions in recent decades. The new Moderate-resolution Imaging Spectroradiometer (MODIS) based landcover and vegetation data is time dependent, and the effect of long-term trends and variability of the relevant parameters is therefore considered by the emission scheme. All input data has a spatial resolution of at least 0.1° compared to 1° in the previous version, equipping the model for high resolution simulations. We validate the updates by comparing results for the aerosol optical depth (AOD) at 550 nm wavelength from a one year simulation at T106 (about 1.1°) resolution with Aerosol Robotic Network (AERONET) and MODIS observations, and results for 10 μm dust AOD (DAOD) with Infrared Atmospheric Sounding Interferometer (IASI) retrievals. The update significantly improves agreement with the observations and is therefore recommended to be used in future simulations.