English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantitative, time-resolved proteomic analysis by combining bioorthogonal noncanonical amino acid tagging and pulsed stable isotope labeling by amino acids in cell culture

MPS-Authors
/persons/resource/persons208206

Schuman,  Erin M.
Synaptic Plasticity Department, Max Planck Institute for Brain Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bagert, J. D., Xie, Y. J., Sweredoski, M. J., Qi, Y., Hess, S., Schuman, E. M., et al. (2014). Quantitative, time-resolved proteomic analysis by combining bioorthogonal noncanonical amino acid tagging and pulsed stable isotope labeling by amino acids in cell culture. Molecular and Cellular Proteomics, 13(5), 1352-1358. doi:10.1074/mcp.M113.031914.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-1C9A-A
Abstract
An approach to proteomic analysis that combines bioorthogonal noncanonical amino acid tagging (BONCAT) and pulsed stable isotope labeling with amino acids in cell culture (pSILAC) provides accurate quantitative information about rates of cellular protein synthesis on time scales of minutes. The method is capable of quantifying 1400 proteins produced by HeLa cells during a 30 min interval, a time scale that is inaccessible to isotope labeling techniques alone. Potential artifacts in protein quantification can be reduced to insignificant levels by limiting the extent of noncanonical amino acid tagging. We find no evidence for artifacts in protein identification in experiments that combine the BONCAT and pSILAC methods.