English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

MPS-Authors
/persons/resource/persons100833

Andreae,  M. O.
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100858

Borrmann,  S.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101066

Klimach,  T.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203107

Könemann,  T.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons104597

Pöhlker,  C.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons203102

Pöhlker,  M. L.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101255

Schneider,  J.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons204098

Schulz,  C.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., et al. (2017). Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmospheric Chemistry and Physics Discussions, 17.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-B957-4
Abstract
Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by one or two orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the BL as a source. The air in the immediate outflow of deep convective clouds was depleted in aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 hours. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the UT from volatile material brought up by deep convection, which is converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian PBL, where aerosol nucleation and new particle formation has not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.