Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Detection and characterization of intermittent complexity variations in cardiac arrhythmia

MPG-Autoren
/persons/resource/persons182785

Schlemmer,  Alexander
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons205256

Baig,  Tariq
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173583

Luther,  Stefan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173613

Parlitz,  Ulrich
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schlemmer, A., Baig, T., Luther, S., & Parlitz, U. (2017). Detection and characterization of intermittent complexity variations in cardiac arrhythmia. Physiological Measurement, 38(8), 1561-1575. doi:10.1088/1361-6579/aa7be0.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-BA53-F
Zusammenfassung
OBJECTIVE: A frequent observation during cardiac fibrillation is a fluctuation in complexity where the irregular pattern of the fibrillation is interrupted by more regular phases of varying length. APPROACH: We apply different measures to sliding windows of raw ECG signals for quantifying the temporal complexity. The methods include permutation entropy, power spectral entropy, a measure for the extent of the set of reconstructed states and several wavelet measures. MAIN RESULTS: Using these methods, variations of fibrillation patterns over time are detected and visualized. SIGNIFICANCE: These quantifications can be used to characterize different phases of the ECG during fibrillation and might improve diagnosis and treatment methods for heart diseases.