日本語
 
User Manual Privacy Policy ポリシー/免責事項 連絡先
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Detection and characterization of intermittent complexity variations in cardiac arrhythmia

MPS-Authors
/persons/resource/persons182785

Schlemmer,  Alexander
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons205256

Baig,  Tariq
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173583

Luther,  Stefan
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173613

Parlitz,  Ulrich
Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

URL
There are no locators available
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Schlemmer, A., Baig, T., Luther, S., & Parlitz, U. (2017). Detection and characterization of intermittent complexity variations in cardiac arrhythmia. Physiological Measurement, 38(8), 1561-1575. doi:10.1088/1361-6579/aa7be0.


引用: http://hdl.handle.net/11858/00-001M-0000-002D-BA53-F
要旨
OBJECTIVE: A frequent observation during cardiac fibrillation is a fluctuation in complexity where the irregular pattern of the fibrillation is interrupted by more regular phases of varying length. APPROACH: We apply different measures to sliding windows of raw ECG signals for quantifying the temporal complexity. The methods include permutation entropy, power spectral entropy, a measure for the extent of the set of reconstructed states and several wavelet measures. MAIN RESULTS: Using these methods, variations of fibrillation patterns over time are detected and visualized. SIGNIFICANCE: These quantifications can be used to characterize different phases of the ECG during fibrillation and might improve diagnosis and treatment methods for heart diseases.