English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electrocatalytic synthesis of hydrogen peroxide on Au–Pd nanoparticles: From fundamentals to continuous production

MPS-Authors
/persons/resource/persons136396

Pizzutilo,  Enrico
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons188367

Kasian,  Olga
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136283

Choi,  Chang Hyuck
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea;

/persons/resource/persons125087

Cherevko,  Serhiy
Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany;
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125274

Mayrhofer,  Karl J. J.
Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany;
Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany ;
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pizzutilo, E., Kasian, O., Choi, C. H., Cherevko, S., Hutchings, G. J., Mayrhofer, K. J. J., et al. (2017). Electrocatalytic synthesis of hydrogen peroxide on Au–Pd nanoparticles: From fundamentals to continuous production. Chemical Physics Letters, 683, 436-442. doi:10.1016/j.cplett.2017.01.071.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-C5D2-D
Abstract
The electrochemical synthesis of hydrogen peroxide (H2O2) represents a promising alternative to the anthraquinone process, as it combines on-site chemical and electrical production. The design of selective electrocatalysts is challenging and is commonly based on the alloying of elements to generate a synergistic effect and increase activity. In the present work, we report the electrochemical activity of Au-Pd nanoparticles immobilized directly onto an electrode as a model to study H2O2 electrochemical synthesis from fundamentals to continuous production. The impact of composition on the oxygen reduction reaction (ORR), the selectivity, as well as the peroxide reduction and oxidation reactions (PROR) are studied. (C) 2017 Elsevier B.V. All rights reserved.