English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Growth of Porous Platinum Catalyst Structures on Tungsten Oxide Support Materials: A New Design for Electrodes

MPS-Authors
/persons/resource/persons136319

Hengge,  Katharina
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136306

Geiger,  Simon
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125274

Mayrhofer,  Karl J. J.
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons76047

Scheu,  Christina
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Materials Analytics, RWTH Aachen University, Kopernikusstrasse 10, Aachen, Germany;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hengge, K., Heinzl, C., Perchthaler, M., Geiger, S., Mayrhofer, K. J. J., & Scheu, C. (2017). Growth of Porous Platinum Catalyst Structures on Tungsten Oxide Support Materials: A New Design for Electrodes. Crystal Growth & Design, 17(4), 1661-1668. doi:10.1021/acs.cgd.6b01663.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-C627-9
Abstract
The growth of a promising material system for high-temperature polymer-electrolyte-membrane-fuel, cells, namely, platinum-(Pt) loaded tungsten suboxide (WO3-x) electrodes, has been studied in-depth. The template-free twostep synthesis-results in highly porous three-dimensional networks of crystalline Pt nanorods on the WO3-x support. The formation, and growth behavior of these catalyst morphologies arc investigated as a function of the deposition time of the catalyst precursor by use of scanning electron microscopy and various transmission electron microscopy techniques. The analysis reveals that octahedral-shaped bulk crystals of the Pt-precursor are formed on the WO3-x support, which subsequently reduce during the thermal treatment. After a reduction time of 4 min, the core of the catalyst Morphologies is still bulk material, composed of Pt nanoparticles embedded in-a, reduced form of the Pt precursor, while the outer shell is formed by a porous network of polycrystalline Pt. Electron tomography helps to reveal the connectivity of the Pt network and allows calculation of the surface-area of a 100 nm X 100 nm portion. This is compared to the macroscopic value for the surface area of the samples' entire network obtained by cyclic voltammery.