Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Growth of Porous Platinum Catalyst Structures on Tungsten Oxide Support Materials: A New Design for Electrodes

MPG-Autoren
/persons/resource/persons136319

Hengge,  Katharina
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136306

Geiger,  Simon
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125274

Mayrhofer,  Karl J. J.
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons76047

Scheu,  Christina
Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Materials Analytics, RWTH Aachen University, Kopernikusstrasse 10, Aachen, Germany;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hengge, K., Heinzl, C., Perchthaler, M., Geiger, S., Mayrhofer, K. J. J., & Scheu, C. (2017). Growth of Porous Platinum Catalyst Structures on Tungsten Oxide Support Materials: A New Design for Electrodes. Crystal Growth & Design, 17(4), 1661-1668. doi:10.1021/acs.cgd.6b01663.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-C627-9
Zusammenfassung
The growth of a promising material system for high-temperature polymer-electrolyte-membrane-fuel, cells, namely, platinum-(Pt) loaded tungsten suboxide (WO3-x) electrodes, has been studied in-depth. The template-free twostep synthesis-results in highly porous three-dimensional networks of crystalline Pt nanorods on the WO3-x support. The formation, and growth behavior of these catalyst morphologies arc investigated as a function of the deposition time of the catalyst precursor by use of scanning electron microscopy and various transmission electron microscopy techniques. The analysis reveals that octahedral-shaped bulk crystals of the Pt-precursor are formed on the WO3-x support, which subsequently reduce during the thermal treatment. After a reduction time of 4 min, the core of the catalyst Morphologies is still bulk material, composed of Pt nanoparticles embedded in-a, reduced form of the Pt precursor, while the outer shell is formed by a porous network of polycrystalline Pt. Electron tomography helps to reveal the connectivity of the Pt network and allows calculation of the surface-area of a 100 nm X 100 nm portion. This is compared to the macroscopic value for the surface area of the samples' entire network obtained by cyclic voltammery.