English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Guanosine prevents anhedonic-like behavior and impairment in hippocampal glutamate transport following amyloid-β1–40 administration in mice.

MPS-Authors
/persons/resource/persons183421

Ganzella,  M.
Department of Neurobiology, MPI for Biophysical Chemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Lanznaster, D., Mack, J. M., Coelho, V., Ganzella, M., Almeida, R. F., Dal-Cim, T., et al. (2017). Guanosine prevents anhedonic-like behavior and impairment in hippocampal glutamate transport following amyloid-β1–40 administration in mice. Molecular Neurobiology, 54(7), 5482-5496. doi:10.1007/s12035-016-0082-1.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-C97E-B
Abstract
Amyloid-beta (A beta) peptides are the major neuropathological hallmarks related with Alzheimer's disease (AD). A beta peptides trigger several biochemical mechanisms of neurotoxicity, including neuroinflammation and glutamatergic neurotransmission impairment. Guanosine is the endogenous guanine-derived nucleoside that modulates the glutamatergic system and the cellular redox status, thus acting as a neuroprotective agent. Here, we investigated the putative neuroprotective effect of guanosine in an AD-like mouse model. Adult mice received a single intracerebroventricular injection of A beta(1-40) (400 pmol/site) or vehicle and then were treated immediately, 3 h later, and once a day during the subsequent 14 days with guanosine (8 mg/kg, intraperitoneally). A beta(1-40) or guanosine did not alter mouse locomotor activity and anxiety-related behaviors. A beta(1-40)-treated mice displayed short-term memory deficit in the object location task that was prevented by guanosine. Guanosine prevented the A beta(1-40)-induced increase in latency to grooming in the splash test, an indicative of anhedonia. A beta(1-40) increased Na+-independent glutamate uptake in ex vivo hippocampal slices, and guanosine reversed it to control levels. The repeated administration of guanosine increased hippocampal GDP levels, which was not observed in the group treated with A beta plus guanosine. A beta(1-40) induced an increase in hippocampal ADP levels. A beta(1-40) decreased GFAP expression in the hippocampal CA1 region, an effect not modified by guanosine. No differences were observed concerning synaptophysin and NeuN immunolabeling. Together, these results show that guanosine prevents memory deficit and anhedonic-like behavior induced by A beta(1-40) that seem to be linked to glutamate transport unbalance and alterations on purine and metabolite levels in mouse hippocampus.