Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates

MPG-Autoren
/persons/resource/persons198795

Modic,  K. A.
Physics of Microstructured Quantum Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Modic, K. A., Ramshaw, B. J., Betts, J. B., Breznay, N. P., Analytis, J. G., McDonald, R. D., et al. (2017). Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates. Nature Communications, 8: 180, pp. 1-5. doi:10.1038/s41467-017-00264-6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-CA3C-8
Zusammenfassung
The complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in.-lithium iridate. We find that a small component of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.