English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation.

MPS-Authors
/persons/resource/persons134776

Lu,  Kefeng
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons209022

den Brave,  Fabian
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78165

Jentsch,  Stefan
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lu, K., den Brave, F., & Jentsch, S. (2017). Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation. Nature cell biology, 19(6), 732-739. doi:10.1038/ncb3531.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-DE68-5
Abstract
Abnormal or aggregated proteins have a strong cytotoxic potential and are causative for human disorders such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. If not restored by molecular chaperones, abnormal proteins are typically degraded by proteasomes or eliminated by selective autophagy. The discovery that both pathways are initiated by substrate ubiquitylation but utilize different ubiquitin receptors incited a debate over how pathway choice is achieved. Here, we demonstrate in yeast that pathway choice is made after substrate ubiquitylation by competing ubiquitin receptors harbouring either proteasome- or autophagy-related protein 8 (Atg8/LC3)-binding modules. Proteasome pathway receptors bind ubiquitin moieties more efficiently, but autophagy receptors gain the upper hand following substrate aggregation and receptor bundling. Indeed, by using sets of modular artificial receptors harbouring identical ubiquitin-binding modules we found that proteasome/autophagy pathway choice is independent of the ubiquitin-binding properties of the receptors but largely determined by their oligomerization potentials. Our work thus suggests that proteasomal degradation and selective autophagy are two branches of an adaptive protein quality control pathway, which uses substrate ubiquitylation as a shared degradation signal.