Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

journal.pone.0181187.pdf
(Verlagsversion), 231KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Köhl, M., Neupane, P. R., & Lotfiomran, N. (2017). The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One, 12, 1-17. doi:10.1371/journal.pone.0181187.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-D50C-0
Zusammenfassung
The world’s forests play a pivotal role in the mitigation of global climate change. By photosynthesis they remove CO2 from the atmosphere and store carbon in their biomass. While old trees are generally acknowledged for a long carbon residence time, there is no consensus on their contribution to carbon accumulation due to a lack of long-term individual tree data. Tree ring analyses, which use anatomical differences in the annual formation of wood for dating growth zones, are a retrospective approach that provides growth patterns of individual trees over their entire lifetime. We developed time series of diameter growth and related annual carbon accumulation for 61 trees of the species Cedrela odorata L. (Meliacea), Hymenaea courbaril L. (Fabacea) and Goupia glabra Aubl. (Goupiacea). The trees grew in unmanaged tropical wet-forests of Suriname and reached ages from 84 to 255 years. Most of the trees show positive trends of diameter growth and carbon accumulation over time. For some trees we observed fluctuating growth—periods of lower growth alternate with periods of increased growth. In the last quarter of their lifetime trees accumulate on average between 39 percent (C. odorata) and 50 percent (G. glabra) of their final carbon stock. This suggests that old-growth trees in tropical forests do not only contribute to carbon stocks by long carbon resistance times, but maintain high rates of carbon accumulation at later stages of their life time.