English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s disease

MPS-Authors
/persons/resource/persons208989

Deco,  Gustavo
Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain;
Catalan Institution for Research and Advanced Studies (ICREA), University Pompeu Fabra, Barcelona, Spain;
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
School of Psychological Sciences, Monash University, Melbourne, Australia;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Saenger_2017.pdf
(Publisher version), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Saenger, V. M., Kahan, J., Foltynie, T., Friston, K., Aziz, T. Z., Green, A. L., et al. (2017). Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s disease. Scientific Reports, 7: 9882. doi:10.1038/s41598-017-10003-y.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-DD47-4
Abstract
Deep brain stimulation (DBS) for Parkinson’s disease is a highly effective treatment in controlling otherwise debilitating symptoms. Yet the underlying brain mechanisms are currently not well understood. Whole-brain computational modeling was used to disclose the effects of DBS during resting-state functional Magnetic Resonance Imaging in ten patients with Parkinson’s disease. Specifically, we explored the local and global impact that DBS has in creating asynchronous, stable or critical oscillatory conditions using a supercritical bifurcation model. We found that DBS shifts global brain dynamics of patients towards a Healthy regime. This effect was more pronounced in very specific brain areas such as the thalamus, globus pallidus and orbitofrontal regions of the right hemisphere (with the left hemisphere not analyzed given artifacts arising from the electrode lead). Global aspects of integration and synchronization were also rebalanced. Empirically, we found higher communicability and coherence brain measures during DBS-ON compared to DBS-OFF. Finally, using our model as a framework, artificial in silico DBS was applied to find potential alternative target areas for stimulation and whole-brain rebalancing. These results offer important insights into the underlying large-scale effects of DBS as well as in finding novel stimulation targets, which may offer a route to more efficacious treatments.