Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Preliminaries for Distributed Natural Computing Inspired by the Slime Mold Physarum Polycephalum

MPG-Autoren
/persons/resource/persons79239

Dirnberger,  Michael
Algorithms and Complexity, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dirnberger, M. (2017). Preliminaries for Distributed Natural Computing Inspired by the Slime Mold Physarum Polycephalum. PhD Thesis, Universität des Saarlandes, Saarbrücken.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-DE4F-0
Zusammenfassung
This doctoral thesis aims towards distributed natural computing inspired by the slime mold Physarum polycephalum. The vein networks formed by this organism presumably support efficient transport of protoplasmic fluid. Devising models which capture the natural efficiency of the organism and form a suitable basis for the development of natural computing algorithms is an interesting and challenging goal. We start working towards this goal by designing and executing wet-lab experi- ments geared towards producing a large number of images of the vein networks of P. polycephalum. Next, we turn the depicted vein networks into graphs using our own custom software called Nefi. This enables a detailed numerical study, yielding a catalogue of characterizing observables spanning a wide array of different graph properties. To share our results and data, i.e. raw experimental data, graphs and analysis results, we introduce a dedicated repository revolving around slime mold data, the Smgr. The purpose of this repository is to promote data reuse and to foster a practice of increased data sharing. Finally we present a model based on interacting electronic circuits including current controlled voltage sources, which mimics the emergent flow patterns observed in live P. polycephalum. The model is simple, distributed and robust to changes in the underlying network topology. Thus it constitutes a promising basis for the development of distributed natural computing algorithms.