Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

1H, 13C and 15N resonance assignment of human guanylate kinase.

MPG-Autoren
/persons/resource/persons180517

Khan,  N.
Research Group of Enzyme Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons147466

Trigo-Mourino,  P.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons73194

Carneiro,  M. G.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15362

Konrad,  M.
Research Group of Enzyme Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15424

Lee,  D.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons45827

Sabo,  T. M.
Department of NMR Based Structural Biology, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khan, N., Ban, D., Trigo-Mourino, P., Carneiro, M. G., Konrad, M., Lee, D., et al. (2018). 1H, 13C and 15N resonance assignment of human guanylate kinase. Biomolecular NMR Assignments, 12(1), 11-14. doi:10.1007/s12104-017-9771-6.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-E41D-B
Zusammenfassung
Human guanylate kinase (hGMPK) is a critical enzyme that, in addition to phosphorylating its physiological substrate (d)GMP, catalyzes the second phosphorylation step in the conversion of anti-viral and anti-cancer nucleoside analogs to their corresponding active nucleoside analog triphosphates. Until now, a high-resolution structure of hGMPK is unavailable and thus, we studied free hGMPK by NMR and assigned the chemical shift resonances of backbone and side chain 1H, 13C, and 15N nuclei as a first step towards the enzyme's structural and mechanistic analysis with atomic resolution.