English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Coding sequence and expression of the homeobox gene Hox 1.3

MPS-Authors
/persons/resource/persons15322

Kessel,  M.
Department of Molecular Cell Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15156

Gruss,  P.
Department of Molecular Cell Biology, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fibi, M., Zink, B., Kessel, M., Colberg-Poley, A. M., Labeit, S., Lehrach, H., et al. (1988). Coding sequence and expression of the homeobox gene Hox 1.3. Development, 102, 349-359.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-EC2B-F
Abstract
We have characterized Hox 1.3 (previously described as m2), a murine homeobox-containing gene, which is a member of the Hox 1 cluster located on chromosome 6. A cloned cDNA was isolated from an Okayama-Berg library generated from the chemically transformed cell line MB66 MCA ACL6. The protein sequence of 270 amino acids was deduced from the nucleotide sequence of an open reading frame containing the homeobox. The open reading frame is interrupted at the genomic level by a 960 bp intron and is organized in two exons. The Hox 1.3 protein was found to contain extensive sequence homology with the murine homeodomain protein Hox 2.1, which is encoded on chromosome 11. There are two homology with the regions in the first exon, i.e. a hexapeptide conserved in many homeobox-containing genes and the N-terminal domain, which was found to be homologous only to Hox 2.1. Furthermore, in exon 2 the homologies of the homeodomain regions are extended up to the carboxy terminus of Hox 1.3 and Hox 2.1. During prenatal murine development, maximal expression of Hox 1.3 is observed in 12-day embryonic tissue. The two transcripts carrying the Hox 1.3 homeobox are 1.9 kb and about 4 kb in length. An abundant Hox 1.3-specific 1.9 kb RNA is also found in F9 cells which were induced for parietal endoderm differentiation, whereas F9 teratocarcinoma stem cells do not stably express this specific RNA. Induction of the transcript occurs immediately after retinoic acid/cAMP treatment and the RNA level remains high for 5 days. Thus, the kinetics are different from the previously described homeobox transcripts Hox 1.1 and Hox 3.1. Interestingly, by analogy to the F9 cell system a negative correlation between transformation and Hox 1.3 expression is observed in 3T3 fibroblasts also. Untransformed 3T3 cells carry abundant 1.9 kb Hox 1.3 RNA, whereas the methylcholanthrene-transformed MB66 and LTK- cells or 3T3 cells transformed by the oncogenes src, fos or SV40 T antigen express only low levels.