English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films

MPS-Authors
/persons/resource/persons135233

Liu,  X. H.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, X. H., Liu, W., & Zhang, Z. D. (2017). Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films. Physical Review B, 96(9): 094405, pp. 1-13. doi:10.1103/PhysRevB.96.094405.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-F590-D
Abstract
We have systematically studied the evolution of magnetic properties, especially the coercivity and the remanence ratio in the vicinity of the Verwey transition temperature (TV), of high-quality epitaxial Fe3O4 thin films grown on MgO (001), MgAl2O4 (MAO) (001), and SrTiO3 (STO) (001) substrates. We observed rapid change of magnetization, coercivity, and remanence ratio at TV, which are consistent with the behaviors of resistivity versus temperature [rho(T)] curves for the different thin films. In particular, we found quite different magnetic behaviors for the thin films on MgO from those on MAO and STO, in which the domain size and the strain state play very important roles. The coercivity is mainly determined by the domain size but the demagnetization process is mainly dependent on the strain state. Furthermore, we observed a reversal of remanence ratio at TV with thickness for the thin films grown on MgO: from a rapid enhancement for 40-nm-to a sharp drop for 200-nm-thick film, and the critical thickness is about 80 nm. Finally, we found an obvious hysteretic loop of coercivity (or remanence ratio) with temperature around TV, corresponding to the hysteretic loop of the.(T) curve, in Fe3O4 thin film grown on MgO.