English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Individual variability as a window on production-perception interactions in speech motor control

MPS-Authors
/persons/resource/persons138192

Franken,  Matthias K.
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons2693

Acheson,  Daniel J.
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

Locator
There are no locators available
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Franken, M. K., Acheson, D. J., McQueen, J. M., Eisner, F., & Hagoort, P. (2017). Individual variability as a window on production-perception interactions in speech motor control. The Journal of the Acoustical Society of America, 142(4), 2007-2018. doi:10.1121/1.5006899.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-F8E4-C
Abstract
An important part of understanding speech motor control consists of capturing the interaction between speech production and speech perception. This study tests a prediction of theoretical frameworks that have tried to account for these interactions: if speech production targets are specified in auditory terms, individuals with better auditory acuity should have more precise speech targets, evidenced by decreased within-phoneme variability and increased between-phoneme distance. A study was carried out consisting of perception and production tasks in counterbalanced order. Auditory acuity was assessed using an adaptive speech discrimination task, while production variability was determined using a pseudo-word reading task. Analyses of the production data were carried out to quantify average within-phoneme variability as well as average between-phoneme contrasts. Results show that individuals not only vary in their production and perceptual abilities, but that better discriminators have more distinctive vowel production targets (that is, targets with less within-phoneme variability and greater between-phoneme distances), confirming the initial hypothesis. This association between speech production and perception did not depend on local phoneme density in vowel space. This study suggests that better auditory acuity leads to more precise speech production targets, which may be a consequence of auditory feedback affecting speech production over time.