Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Operando Phonon Studies of the Protonation Mechanism in Highly Active Hydrogen Evolution Reaction Pentlandite Catalysts

MPG-Autoren
/persons/resource/persons140588

Zendegani,  Ali
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Jeon,  Hyo Sang
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125232

Körmann,  Fritz
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125180

Hickel,  Tilmann
Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Interface Science, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zegkinoglou, I., Zendegani, A., Sinev, I., Kunze, S., Mistry, H., Jeon, H. S., et al. (2017). Operando Phonon Studies of the Protonation Mechanism in Highly Active Hydrogen Evolution Reaction Pentlandite Catalysts. Journal of the American Chemical Society, 139(41), 14360-14363. doi:10.1021/jacs.7b07902.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-FCEA-2
Zusammenfassung
Synthetic pentlandite (Fe4.5Ni4.5S8) is a promising.electrocatalyst for hydrogen evolution, demonstrating high current densities, low overpotential and remarkable stability in bulk form. The depletion of sulfur from the surface of this catalyst during the electrochemical reaction has been proposed to be beneficial for its catalytic performance, but the role of sulfur vacancies and the mechanism determining the reaction kinetics are still unknown. We have performed electrochemical operando studies of the vibrational dynamics of pentlandite under hydrogen evolution reaction conditions using 57Fe nuclear resonant inelastic Xray scattering. Comparing the measured partial (Feprojected) vibrational density of states with density functional theory calculations, we have demonstrated that hydrogen atoms preferentially occupy substitutional positions replacing pre-existing sulfur vacancies. Once all vacancies are filled, the protonation proceeds interstitially, which slows down the reaction. Our results highlight the beneficial role of sulfur vacancies in the electrocatalytic performance of pentlandite and give insights into the hydrogen adsorption mechanism during the reaction.