English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Critical transitions and perturbation growth directions

MPS-Authors
/persons/resource/persons210925

Sharafi,  Nahal
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173689

Timme,  Marc
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons191700

Hallerberg,  Sarah
Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sharafi, N., Timme, M., & Hallerberg, S. (2017). Critical transitions and perturbation growth directions. Physical Review E, 96(3): 032220. doi:10.1103/PhysRevE.96.032220.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-FC81-E
Abstract
Critical transitions occur in a variety of dynamical systems. Here we employ quantifiers of chaos to identify changes in the dynamical structure of complex systems preceding critical transitions. As suitable indicator variables for critical transitions, we consider changes in growth rates and directions of covariant Lyapunov vectors. Studying critical transitions in several models of fast-slow systems, i.e., a network of coupled FitzHugh-Nagumo oscillators, models for Josephson junctions, and the Hindmarsh-Rose model, we find that tangencies between covariant Lyapunov vectors are a common and maybe generic feature during critical transitions. We further demonstrate that this deviation from hyperbolic dynamics is linked to the occurrence of critical transitions by using it as an indicator variable and evaluating the prediction success through receiver operating characteristic curves. In the presence of noise, we find the alignment of covariant Lyapunov vectors and changes in finite-time Lyapunov exponents to be more successful in announcing critical transitions than common indicator variables as, e.g., finite-time estimates of the variance. Additionally, we propose a new method for estimating approximations of covariant Lyapunov vectors without knowledge of the future trajectory of the system. We find that these approximated covariant Lyapunov vectors can also be applied to predict critical transitions.