Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phylogeny-aware identification and correction of taxonomically mislabeled sequences

MPG-Autoren
/persons/resource/persons210890

Yilmaz,  P.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210403

Glockner,  F.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kozlov, A., Zhang, J., Yilmaz, P., Glockner, F., & Stamatakis, A. (2016). Phylogeny-aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Research, 44(11): 11, pp. 5022-5033.


Zitierlink: http://hdl.handle.net/21.11116/0000-0001-C2C5-5
Zusammenfassung
Molecular sequences in public databases are mostly annotated by the submitting authors without further validation. This procedure can generate erroneous taxonomic sequence labels. Mislabeled sequences are hard to identify, and they can induce downstream errors because new sequences are typically annotated using existing ones. Furthermore, taxonomic mislabelings in reference sequence databases can bias metagenetic studies which rely on the taxonomy. Despite significant efforts to improve the quality of taxonomic annotations, the curation rate is low because of the labor-intensive manual curation process. Here, we present SATIVA, a phylogeny-aware method to automatically identify taxonomically mislabeled sequences ('mislabels') using statistical models of evolution. We use the Evolutionary Placement Algorithm (EPA) to detect and score sequences whose taxonomic annotation is not supported by the underlying phylogenetic signal, and automatically propose a corrected taxonomic classification for those. Using simulated data, we show that our method attains high accuracy for identification (96.9% sensitivity/91.7% precision) as well as correction (94.9% sensitivity/89.9% precision) of mislabels. Furthermore, an analysis of four widely used microbial 16S reference databases (Greengenes, LTP, RDP and SILVA) indicates that they currently contain between 0.2% and 2.5% mislabels. Finally, we use SATIVA to perform an in-depth evaluation of alternative taxonomies for Cyanobacteria.