English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea

MPS-Authors
/persons/resource/persons210428

Hahnke,  Richard L.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210263

Bennke,  Christin M.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210389

Fuchs,  Bernhard M.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210592

Mann,  Alexander J.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210812

Teeling,  Hanno
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210230

Amann,  Rudolf
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210437

Harder,  Jens
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hahnke, R. L., Bennke, C. M., Fuchs, B. M., Mann, A. J., Rhiel, E., Teeling, H., et al. (2015). Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea. Environmental Microbiology, 17: 1, pp. 3515-3526.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C405-C
Abstract
The roles of individual bacterioplankton species in the re-mineralization of algal biomass are poorly understood. Evidence from molecular data had indicated that a spring diatom bloom in the German Bight of the North Sea in 2009 was followed by a rapid succession of uncultivated bacterioplankton species, including members of the genera Ulvibacter, Formosa, Polaribacter (class Flavobacteria) and Reinekea (class Gammaproteobacteria). We isolated strains from the same site during the diatom bloom in spring 2010 using dilution cultivation in an artificial seawater medium with micromolar substrate and nutrient concentrations. Flow cytometry demonstrated growth from single cells to densities of 104–106 cells ml–1 and a culturability of 35%. Novel Formosa, Polaribacter and Reinekea strains were isolated and had 16S rRNA gene sequence identities of > 99.8% with bacterioplankton in spring or summer 2009. Genomes of selected isolates were draft sequenced and used for read recruitment of metagenomes from bacterioplankton in 2009. Metagenome reads covered 93% of a Formosa clade B, 91% of a Reinekea and 74% of a Formosa clade A genome, applying a ≥ 94.5% nucleotide identity threshold. These novel strains represent abundant bacterioplankton species thriving on coastal phytoplankton blooms in the North Sea.