English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers

MPS-Authors
/persons/resource/persons210716

Riedel,  Thomas
Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210637

Niggemann,  Jutta
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210334

Dittmar,  Thorsten
Marine Geochemistry Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wagner, S., Riedel, T., Niggemann, J., Vähätalo, A. V., Dittmar, T., & Jaffé, R. (2015). Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers. Environmental Science & Technology, 49: 1, pp. 13798-13806.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C41C-3
Abstract
Large world rivers are significant sources of dissolved organic matter (DOM) to the oceans. Watershed geomorphology and land use can drive the quality and reactivity of DOM. Determining the molecular composition of riverine DOM is essential for understanding its source, mobility and fate across landscapes. In this study, DOM from the main stem of 10 global rivers covering a wide climatic range and land use features was molecularly characterized via ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). FT-ICR mass spectral data revealed an overall similarity in molecular components among the rivers. However, when focusing specifically on the contribution of nonoxygen heteroatomic molecular formulas (CHON, CHOS, CHOP, etc.) to the bulk molecular signature, patterns relating DOM composition and watershed land use became apparent. Greater abundances of N- and S-containing molecular formulas were identified as unique to rivers influenced by anthropogenic inputs, whereas rivers with primarily forested watersheds had DOM signatures relatively depleted in heteroatomic content. A strong correlation between cropland cover and dissolved black nitrogen was established when focusing specifically on the pyrogenic class of compounds. This study demonstrated how changes in land use directly affect downstream DOM quality and could impact C and nutrient cycling on a global scale.