English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Characterisation of Non-Autoinducing Tropodithietic Acid (TDA) Production from Marine Sponge Pseudovibrio Species

MPS-Authors
/persons/resource/persons210365

Guerra,  A.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210403

Glöckner,  F.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Guerra14.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Harrington, C., Reen, F., Mooij, M., Stewart, F., Chabot, J., Guerra, A., et al. (2014). Characterisation of Non-Autoinducing Tropodithietic Acid (TDA) Production from Marine Sponge Pseudovibrio Species. Marine Drugs, 12(12), 5960-5978.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C4C0-8
Abstract
The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.