English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effect of sulfate on low-temperature anaerobic digestion

MPS-Authors
/persons/resource/persons210227

Al-Raei,  A.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210257

de Beer,  D.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210318

Collins,  G.
Nutrient Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

AlRaei14.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Madden, P., Al-Raei, A., Enright, A., Chinalia, F., de Beer, D., O'Flaherty, V., et al. (2014). Effect of sulfate on low-temperature anaerobic digestion. Frontiers in Microbiology, 5: 376, pp. 1-15.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C54D-B
Abstract
The effect of sulfate addition on the stability of, and microbial community behavior in, low-temperature anaerobic expanded granular sludge bed-based bioreactors was investigated at 15 degrees C. Efficient bioreactor performance was observed, with chemical oxygen demand (COD) removal efficiencies of >90%, and a mean SO42- removal rate of 98.3%. In situ methanogensis appeared unaffected at a COD: SO42- influent ratio of 8:1, and subsequently of 3:1, and was impacted marginally only when the COD: SO42- ratio was 1:2. Specific methanogenic activity assays indicated a complex set of interactions between sulfate-reducing bacteria (SRB), methanogens and homoacetogenic bacteria. SO42- addition resulted in predominantly acetoclastic, rather than hydrogenotrophic, methanogenesis until >600 days of SO42--influenced bioreactor operation. Temporal microbial community development was monitored by denaturation gradient gel electrophoresis (DGGE) of 16S rRNA genes. Fluorescence in situ hybridizations (FISH), qPCR and microsensor analysis were combined to investigate the distribution of microbial groups, and particularly SRB and methanogens, along the structure of granular biofilms. qPCR data indicated that sulfidogenic genes were present in methanogenic and sulfidogenic biofilms, indicating the potential for sulfate reduction even in bioreactors not exposed to SO42-. Although the architecture of methanogenic and sulfidogenic granules was similar, indicating the presence of SRB even in methanogenic systems, FISH with rRNA targets found that the SRB were more abundant in the sulfidogenic biofilms. Methanosaeta species were the predominant, keystone members of the archaeal community, with the complete absence of the Methanosarcina species in the experimental bioreactor by trial conclusion. Microsensor data suggested the ordered distribution of sulfate reduction and sulfide accumulation, even in methanogenic granules.