English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent

MPS-Authors
/persons/resource/persons210907

Zimmermann,  J.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210583

Lott,  C.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210847

Weber,  Miriam
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210701

Ramette,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210343

Dubilier,  N.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210670

Petersen,  J.M.
Department of Symbiosis, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zimmermann, J., Lott, C., Weber, M., Ramette, A., Bright, M., Dubilier, N., et al. (2014). Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environmental Microbiology, 12: 16, pp. 3638-3656.


Cite as: http://hdl.handle.net/21.11116/0000-0001-C59F-E
Abstract
Vestimentiferan Tws colonize hydrothermal vents and cold seeps worldwide. They lack a digestive system and gain nutrition from endosymbiotic sulfur-oxidizing bacteria. It is currently assumed that vestimentiferan Tws harbour only a single endosymbiont type. A few studies found indications for additional symbionts, but conclusive evidence for a multiple symbiosis is still missing. We investigated Tws from Marsili Seamount, a hydrothermal vent in the Mediterranean Sea. Molecular and morphological analyses identified the Tws as Lamellibrachia anaximandri. 16S ribosomal RNA clone libraries revealed two distinct gammaproteobacterial phylotypes that were closely related to sequences from other Lamellibrachia symbionts. Catalysed reporter deposition fluorescence in situ hybridization with specific probes showed that these sequences are from two distinct symbionts. We also found two variants of key genes for sulfur oxidation and carbon fixation, suggesting that both symbiont types are autotrophic sulfur oxidizers. Our results therefore show that vestimentiferans can host multiple co-occurring symbiont types. Statistical analyses of vestimentiferan symbiont diversity revealed that host genus, habitat type, water depth and geographic region together accounted for 27% of genetic diversity, but only water depth had a significant effect on its own. Phylogenetic analyses showed a clear grouping of sequences according to depth, thus confirming the important role water depth played in shaping vestimentiferan symbiont diversity.