English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Resistance of Lophelia pertusa to coverage by sediment and petroleum drill cuttings

MPS-Authors
/persons/resource/persons210224

Allers,  E.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210215

Abed,  R. M. M.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210853

Wehrmann,  L. M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210839

Wang,  T.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210257

de Beer,  D.
Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Allers, E., Abed, R. M. M., Wehrmann, L. M., Wang, T., Larsson, A. I., Purser, A., et al. (2013). Resistance of Lophelia pertusa to coverage by sediment and petroleum drill cuttings. Marine Pollution Bulletin, 74(1), 132-140.


Cite as: https://hdl.handle.net/21.11116/0000-0001-C671-0
Abstract
In laboratory experiments, the cold-water coral Lophelia pertusa was exposed to settling particles. The effects of reef sediment, petroleum drill cuttings and a mix of both, on the development of anoxia at the coral surface were studied using O-2, pH and H2S microsensors and by assessing coral polyp mortality. Due to the branching morphology of L pernisa and the release of coral mucus, accumulation rates of settling material on coral branches were low. Microsensors detected H2S production in only a few samples, and sulfate reduction rates of natural reef sediment slurries were low (<0.3 nmol S cm(-3) d(-1)). While the exposure to sediment clearly reduced the coral's accessibility to oxygen, L. pertusa tolerated both partial low-oxygen and anoxic conditions without any visible detrimental short-term effect, such as tissue damage or death. However, complete burial of coral branches for >24 h in reef sediment resulted in suffocation. (C) 2013 Elsevier Ltd. All rights reserved.