English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Seafloor oxygen consumption fuelled by methane from cold seeps

MPS-Authors
/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210857

Wenzhofer,  F.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Boetius, A., & Wenzhofer, F. (2013). Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, 6(9), 725-734.


Cite as: http://hdl.handle.net/21.11116/0000-0001-C681-D
Abstract
The leakage of cold, methane-rich fluids from subsurface reservoirs to the sea floor at specific sites on continental slopes, termed cold seeps, sustains some of the richest ecosystems on the sea bed. These seep-fuelled communities utilize around two orders of magnitude more oxygen per unit area than non-seep seafloor communities. Much of the oxygen is consumed by microbes and animal-microbe symbioses that use methane as an energy source. The proportion of methane consumed varies with fluid flow rate, ranging from 80% in seeps with slow fluid flow to less than 20% in seeps where fluid flow is high. Assuming the presence of a few tens of thousands of active cold seep systems on continental slopes worldwide, we estimate that the total efflux of methane to the overlying ocean could reach 0.02 Gt of carbon annually. As much more methane is lost from continental slopes, be it through emission to the hydrosphere or consumption by microbes, than can be produced, we suggest that a substantial fraction of the methane that fuels seep ecosystems is sourced from deep carbon buried kilometres under the sea floor.